Math 220 - Calculus f. Business and Management - Worksheet 3

Solutions for Worksheet 3 - Powers and Roots

Numerical Problems

Exercise 1:

Simplify each expression to a single number.

Solution to #1:

Algebra Problems

Exercise 2:

Simplify to x^r where r is a real number.

Solution to #2:

2a:
$$x^{6}\sqrt[3]{x} = x^{6}x^{1/3} = x^{18/3+1/3} = x^{19/3}$$

2b: $\sqrt{x}/x^{4} = x^{1/2}x^{-4} = x^{1/2-4} = x^{-7/2}$
2c: $x^{3}\sqrt{x}/\sqrt[4]{x} = x^{3}x^{1/2}/x^{1/4} = x^{3+1/2-1/4} = x^{13/4}$
2d: $(\sqrt{x})^{3} = (x^{1/2})^{3} = x^{3/2}$
2e: $\sqrt[3]{x^{5}} = x^{5\cdot1/3} = x^{5/3}$
2f: $(1/x)^{2/3} = x^{-2/3}$
2g: $(x^{5})^{3} = x^{5\cdot3} = x^{15}$
2h: $x^{5^{3}} = x^{(5^{3})} = x^{125}$
2i: $\frac{x^{-1/2}}{x^{3}} = x^{-1/2}x^{-3} = x^{-1/2-3} = x^{-7/2}$
2j: $(-x)^{4} = (-x) \cdot (-x) \cdot (-x) = x^{4}$

Domains

Exercise 3:

Find the domain of each function.

 $\begin{array}{lll} 3a: \ f(x) &= \sqrt{3x+2} \ , & \ 3b: \ f(x) &= \ \sqrt[3]{5x-6}, & \ 3c: \ f(x) &= \sqrt{4-x}, \\ 3d: \ f(x) &= \sqrt{-7x}, & \ 3e: \ f(x) &= \ \frac{2}{5x+4}, & \ 3f: \ f(x) &= \ \frac{6}{3-7x}, \\ 3g: \ f(x) &= \ 5/(-6x), & \ 3h: \ f(x) &= \ \sqrt{x^2-x-6}, & \ 3i: \ f(x) &= \ \frac{1}{\sqrt{2x-8}} \end{array}$

Solution to #3:

3a: $f(x) = \sqrt{3x+2}$: *The radicand* 3x + 2 *cannot be negative. We require* $3x + 2 \ge 0$, *i.e.*, $3x \ge -2$, *i.e.*, $x \ge -2/3$, *i.e.*, $D_f = [-2/3, \infty)$.

3b: $f(x) = \sqrt[3]{5x-6}$: $\sqrt[3]{A}$ is defined for any number A, i.e., $D_f = \mathbb{R} = (-\infty, \infty)$.

3c: $f(x) = \sqrt{4-x}$: same as 3A: We require $4-x \ge 0$, *i.e.*, $4 \ge x$, *i.e.*, $D_f = (-\infty, 4]$.

3d: $f(x) = \sqrt{-7x}$: same as 3A: We require $-7x \ge 0$, i.e., $7x \le 0$ (!!), i.e., $x \le 0$, i.e., $D_f = (-\infty, 0]$.

3e: $f(x) = \frac{2}{5x+4}$: Not allowed to divide by zero. We require $5x + 4 \neq 0$, i.e., $x \neq -4/5$, i.e., $D_f = \{x | x \neq -4/5\} = (-\infty, -4/5) \cup (-4/5, \infty)$.

3f: $f(x) = \frac{6}{3-7x}$: Not allowed to divide by zero. We require $3 - 7x \neq 0$, i.e., $x \neq 3/7$, i.e., $D_f = \{x | x \neq 3/7\} = (-\infty, 3/7) \cup (3/7, \infty)$.

3g: f(x) = 5/(-6x): Not allowed to divide by zero. We require $5/(-6x) \neq 0$, i.e., $x \neq 0$, i.e., $D_f = \{x | x \neq 0\} = (-\infty, 0) \cup (0, \infty)$.

3h: $f(x) = \sqrt{x^2 - x - 6}$: same as 3A: We require $x^2 - x - 6 \ge 0$. It's easiest to factor the quadratic: $x^2 - x - 6 = (x + 2)(x - 3)$. $(x + 2)(x - 3) \ge 0$ means

either a) both $(x + 2) \ge 0$ and $(x - 3) \ge 0$, *i.e.*, both $x \ge -2$ and $x \ge 3$, *i.e.*, $x \ge 3$ or b) both $(x + 2) \le 0$ and $(x - 3) \le 0$, *i.e.*, both $x \le -2$ and $x \le 3$, *i.e.*, $x \le -2$. a), b) together: $x \le -2$ or $x \ge 3 \Rightarrow D_f = (-\infty, -2) \cup (3, \infty)$.

3i: $f(x) = \frac{1}{\sqrt{2x-8}}$: Not allowed to divide by zero. We require both a: $\sqrt{2x-8} \neq 0$, i.e., $x \neq 4$. b: Radicand $2x - 8 \geq 0$, i.e., $x \geq 4$. a, b together: x > 4 is required, i.e., $D_f = (4, \infty)$.