Math 220 - Calculus f. Business and Management - Worksheet 4

Solutions for Worksheet 4 - Polynomials and Fractions

Roots of Polynomials

Exercise 1: Find the roots (zeroes) of each function. Note: sometimes the factors will be in radical form.

1a:
$$f(x) = x + 7$$
, 1b: $f(x) = 3 - 2x$, 1c: $f(x) = x^2 - x - 20$,
1d: $f(x) = 6x^2 + x - 1$, 1e: $f(x) = x^2 - 4x + 2$, 1f: $f(x) = x^3 - 5x^2 + 14x$

Solution to #1:

1a: Simply set x + 7 = 0 *and solve to get* x = -7*.*

1b: Set 3 - 2x = 0 so that -2x = -3 and then $x = \frac{3}{2}$.

1c: We factor $f(x) = x^2 - x - 20 = (x+4)(x-5) = 0$, i.e., x = -4 or x = 5.

1d: We factor
$$f(x) = 6x^2 + x - 1 = (3x - 1)(2x + 1) = 0$$
, i.e., $x = 4/12 = 1/3$ or $x = -6/12 = -1/2$.

1d - Alternate solution: If you do not see quickly how to factor f(x), use the quadratic formula instead: $x = \frac{1}{2 \cdot 6} \left(-1 \pm \sqrt{1^2 - 4(6)(-1)} \right) = 1/12(-1 \pm \sqrt{25}) = 1/12(-1 \pm 5) = \frac{-1 \pm 5}{12}$, i.e., x = 4/12 = 1/3 or x = -6/12 = -1/2.

 $1e: f(x) = x^2 - 4x + 2 = 0 \text{ means } x = \frac{1}{2} \Big(-(-4) \pm \sqrt{(-4)^2 - 4(1)(2)} \Big) = 1/2(4 \pm \sqrt{8}) = 1/2(4 \pm 2\sqrt{2}) = 2 \pm \sqrt{2},$ i.e., $x = 2 + \sqrt{2}$ or $x = 2 - \sqrt{2}.$

1f: $f(x) = x^3 - 5x^2 + 14x = x(x^2 - 5x + 14) = 0$ means x = 0 or $x^2 - 5x + 14 = 0$. It's fastest to use the Quadratic Formula: $x = \frac{1}{2} \left(-(-5) \pm \sqrt{(-5)^2 - 4(1)(14)} \right) = 1/2(5 \pm \sqrt{25 - 56}) = 1/2(5 \pm \sqrt{-31})$. There are no further solutions because the radicand is negative, but remember that you got the solution x = 0 independently, so do not throw that one away: f(x) is zero only if x = 0.

1f - Alternate solution: If you cannot remember the quadratic formula, you can still use completion of the square instead: $f(x) = x^3 - 5x^2 + 14x = x(x^2 - 5x + 14) = 0$ means x = 0 or $x^2 - 5x + 14 = 0$. You can use the Quadratic Formula but I shall illustrate here the "completion of the square" technique: $x^2 - 5x + 14 = x^2 - 2(5/2)x + (5/2)^2 + 14 - (5/2)^2$ $= (x - 5/2)^2 + 14 - 25/4 = (x - 5/2)^2 + \frac{56 - 25}{4} = 0$ means the same as $(x - 5/2)^2 = -\frac{56 - 25}{4} = -31/4$. But squares are never negative, so $x^2 - 5x + 14$ is never zero: f(x) is zero only if x = 0.

Domains of Functions

Exercise 2: Find the domain of each function.

$$\begin{aligned} a: f(x) &= \frac{-6}{x^2 + 2x - 24}, \quad b: f(x) = \frac{5x}{2x^2 + 3x - 7}, \quad c: f(x) = \frac{x + 2}{x^2 + 6x + 8}, \\ d: f(x) &= \frac{8}{x^2 + 2x + 5}, \quad e: f(x) = \frac{1}{\sqrt{2x - 8}}, \quad f: f(x) = \frac{2x}{\sqrt{5 - 3x}}, \\ g: f(x) &= \frac{x^2}{\sqrt{-4x}}, \quad h: f(x) = \frac{1}{\sqrt{x^2 - 3x - 18}}, \quad i: f(x) = \frac{\sqrt{x}}{x^2 + x - 6} \end{aligned}$$

Solution to #2:

a: $f(x) = \frac{-6}{x^2 + 2x - 24}$: Not allowed to divide by zero. We factor the denominator $x^2 + 2x - 24 = (x + 6)(x - 4)$. This is zero for x = -6, x = 4 and we must disallow these values: $D_f = \{x | x \neq -6, x \neq 4\}$; same as $D_f = (-\infty, -6) \cup (-6, 4) \cup (4, \infty)$.

 $b: f(x) = \frac{5x}{2x^2 + 3x - 7}: \text{ Not allowed to divide by zero. We use the quadratic formula: } 2x^2 + 3x - 7 \text{ means}$ $x = \frac{1}{2(2)} \Big(-3 \pm \sqrt{3^2 - 4(2)(-7)} \Big) = 1/4(-3 \pm \sqrt{9 + 56} = 1/4(-3 \pm \sqrt{65}), \text{ i.e., } x = (-3 \pm \sqrt{65})/4 \text{ must be}$ $excluded \text{ from } D_f: D_f = \{x | x \neq (-3 - \sqrt{65})/4, x \neq (-3 + \sqrt{65})/4\}; \text{ same as}$ $D_f = (-\infty, \frac{-3 - \sqrt{65}}{4}) \cup (\frac{-3 - \sqrt{65}}{4}, \frac{-3 + \sqrt{65}}{4}) \cup (\frac{-3 + \sqrt{65}}{4}, \infty).$

c: $f(x) = \frac{x+2}{x^2+6x+8}$: Not allowed to divide by zero. We factor the denominator $x^2 + 6x + 8 = (x+2)(x+4)$. This is zero for x = -2, x = -4 and we must disallow these values: $D_f = \{x | x \neq -4, x \neq -2\}$; same as $D_f = (-\infty, -4) \cup (-4, -2) \cup (-2, \infty)$.

Note that even though $f(x) = \frac{x+2}{(x+2)(x+4)}$ simplifies to $f(x) = \frac{1}{(x+4)}$ and the "x = -2 division by zero problem" has magically disappeared, this does not change the fact that -2 does not belong to D_f and that f(-2) is nonsensical!

$$d: f(x) = \frac{8}{x^2 + 2x + 5}: It's \text{ fastest to use the Quadratic Formula: } x = \frac{1}{2} \Big(-2 \pm \sqrt{2^2 - 4(1)(5)} \Big) = 1/2(-2 \pm \sqrt{-16})$$

This can be solved by use of the Quadratic Formula. I shall use completion of the square instead. The denominator is zero if $x^2 + 2x + 5 = x^2 + 2x + 4 + 1 = 0$, i.e., $(x + 2)^2 + 1 = 0$, i.e., $(x + 2)^2 = -1$. Squares will never be negative and we need not worry about dividing by zero. Nothing needs to be excluded from D_f and we get $D_f = \mathbb{R} = (-\infty, \infty)$. There are no further solutions because the radicand is negative and we need not worry about dividing by zero. Nothing needs to be excluded from D_f and we get $D_f = \mathbb{R} = (-\infty, \infty)$.

d - Alternate solution: If you cannot remember the quadratic formula, you can still use completion of the square instead: The denominator is zero if $x^2 + 2x + 5 = x^2 + 2x + 4 + 1 = 0$, i.e., $(x + 2)^2 + 1 = 0$, i.e., $(x + 2)^2 = -1$. Squares will never be negative and we need not worry about dividing by zero, i.e., $D_f = \mathbb{R} = (-\infty, \infty)$.

e: We are not allowed to divide by zero or take the square root of a negative number. So, the inside of the square root can't be zero, and it cant be negative. In other words, 2x - 8 > 0. So, 2x > 8 which means that x > 4. Therefore, $D_f = (4, \infty)$.

f: As in B5, we are not allowed to divide by zero or take the square root of a negative number. So, we need that 5-3x > 0, which means -3x > -5, or $x > \frac{5}{3}$. Therefore, $D_f = (\frac{5}{3}, \infty)$.

g: $f(x) = \frac{x^2}{\sqrt{-4x}}$: Two things to worry about: 1) we cannot divide by zero and 2) square roots cannot be negative. 1) means we need $\sqrt{-4x} \neq 0$; same as $x \neq 0$.

2) means we need $-4x \ge 0$, i.e., $4x \le 0$ (!), i.e., $x \le 0$.

1) and 2) together means we must have x < 0, i.e., $D_f = (-\infty, 0)$.

h: $f(x) = \frac{1}{\sqrt{x^2 - 3x - 18}}$: Not allowed to divide by zero and radicand must be ≥ 0 , i.e., need $x^2 - 3x - 18 > 0$ (STRICLY greater!). We factor $x^2 - 3x - 18 = (x+3)(x-6)$ and observe separately what happens for $-\infty < x < -3$, $x = -3, -3 < x < 6, x = 6, 6 < x < \infty$:

If x does the following:	<i>Then x</i> +3 <i>and x</i> -6 <i>do this:</i>	Hence (x+3)(x-6) is:
$-\infty < x < -3$	$\bar{x} + \bar{3} < \bar{0}$ and $\bar{x} - \bar{6} < \bar{0}$	$ > \bar{0}$: $\bar{b}e\bar{l}ong\bar{s}$ to \bar{D}_f
$x = -\overline{3}$	$\bar{x} + \bar{3} = 0$ and $\bar{x} - \bar{6} < \bar{0}$	$\vec{\mathbf{n}} = \vec{0} : \mathbf{\bar{N}} \mathbf{\bar{O}} \mathbf{\bar{T}} \mathbf{\bar{A}} \mathbf{\bar{L}} \mathbf{\bar{L}} \mathbf{\bar{O}} \mathbf{\bar{W}} \mathbf{\bar{E}} \mathbf{\bar{D}}^{-1}$
-3 < x < 6	$\bar{x} + \bar{3} > 0$ and $\bar{x} - \bar{6} < \bar{0}$	$\begin{bmatrix} - 0 \end{bmatrix} \overline{N}\overline{O}\overline{T}\overline{A}\overline{L}\overline{L}\overline{O}\overline{W}\overline{E}\overline{D}]^{-1}$
x = 6	$\bar{x} + \bar{3} > 0$ and $\bar{x} - \bar{6} = \bar{0}$	$ = 0: \bar{N}\bar{O}\bar{T}\bar{A}\bar{L}\bar{L}\bar{O}\bar{W}\bar{E}\bar{D} $
$6 < x < \infty$	$\bar{x} + \bar{3} > 0$ and $\bar{x} - \bar{6} > \bar{0}$	$\overline{} > \overline{0}$: $\overline{belongs}$ to $\overline{D_f}$

In case you find it it easier, it's perfecty acceptable for your solutions if you draw a picture and pick some specific number in each one of the three intervals to illustrate what sign the product (x+3)(x-6) will have in each one of those segments:

x = -5	(-5+3)(-5-6) = (-2)(-11)	> 0 : belongs to D_f
$\bar{x} = -3$	$(-3+3)(-3-6) = 0 \cdot (-9)^{-1}$	$\vec{=} \vec{0} : \vec{N} \vec{O} \vec{T} \vec{A} \vec{L} \vec{L} \vec{O} \vec{W} \vec{E} \vec{D}$
$x = \overline{0}$	$(\bar{0}+\bar{3})(\bar{0}-\bar{6})=3(-9)$	< 0 : $\overline{NOT} \overline{ALLOWED}$?
x = 6	$\overline{(6+3)}(\overline{6-6}) = \overline{9} \cdot \overline{0}$	$= 0$: $\overline{NOT} \overline{ALLOWED}$
$x = 10^{-1}$	$(\bar{10}+\bar{3})(\bar{10}-\bar{6})=1\bar{3}\cdot\bar{4}$	$> \overline{0}$: belongs to \overline{D}_f

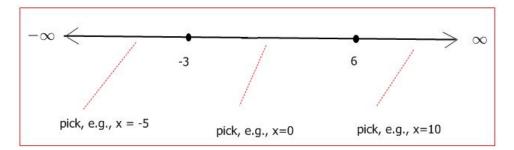


Figure 1: Five choices for the sign of (x + 3)(x - 6)

Either way it follows that the domain consists of the left and right end pieces: $D_f = (-\infty, -3) \cup (6, \infty)$.

i: $f(x) = \frac{\sqrt{x}}{x^2 + x - 6}$: Not allowed to divide by zero and the radicand x must $be \ge 0$. $x^2 + x - 6 = (x + 3)(x - 2)$ is zero for x = -3 or x = 2. All together: we must exclude x < 0, x = -3, x = 2, *i.e.*, $D_f = [0, 2) \cup (2, \infty)$.