
Math 220 - Calculus f. Business and Mgmt - Worksheet 9

Solutions for Worksheet 9 - Piecewise Defined Functions and Continuity
Evaluating and Graphing Functions

Exercise 1: Compose these pairs of functions into a single function

1a : f(x) =

{
2x+ 3 ifx < 3,

x2 ifx ≥ 3.
Evaluate f(1), f(3), f(5) and graph the function.

1b : g(x) =

{
4x ifx < 2,

x+ 3 ifx ≥ 2.
Evaluate g(-3), g(2), g(4) and graph the function.

1c : h(x) =

{
3x+ 1 ifx < 1,

x+ 3 ifx > 1.
Evaluate h(-3), h(2), h(4) and graph the function.

Solution to #1:

The solutions to all three functions are given by means of Excel graphing sheets. Not the best tool available but it gets a
good picture of the shape of the graph of each of the three functions.

As far as the evaluation f(1), f(3), · · · , g(−3), · · · , h(1), h(3) is concerned, just determine for each argument whether
it belongs to the upper or lower branch. Note though that h(1) is UNDEFINED because 1 does not belong to the domain
Dh of h! See Figure 1: “Problems A1, A2: Graphs of f(x) and g(x)” and Figure 2: “Problem A3: Graph of h(x)” further
down.

(a) Graph of f(x) (b) Graph of g(x)

Figure 1: Problems 1a, 1b: Graphs of f(x) and g(x)
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Figure 2: Problem 1c: Graph of h(x)

Building piecewise functions

Exercise 2: Labor costs $10 per hour until people have worked 40 hours. After 40 hours labor costs $15 per hour.
Develop a piecewise function for cost as a function of hours worked: c = C(t). Evaluate this function to find the cost of
35 hours of labor, then 40 hours and 45 hours. It may be easier to do the evaluation first and consider how the calculation
was done before trying to define the function. Graph the function.

Solution to #2:

Things will become a lot more transparent if we look at the hourly RATE of labor as a function L(t) of time t. A very
simple function indeed because it stays constant 10 dollars per hour if 0 ≤ t ≤ 40; it jumps from $10 to $15 per hours
at time t = 40 and it remains at that value:

L(t) =

{
10 if 0 ≤ t ≤ 40,

15 if t > 40.

Think of what happens if a person works for 60 hours and then you know what to do: This is illustrated in Figure 3:
“Problem B1: Cost C(t) with underlying rate L(t)” below.
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Figure 3: Problem 2: Cost C(t) with underlying rate L(t)

The cost for the first 40 hours is the area 40 × 10 = $400.00 of the left rectangle. To this we must add the cost for the
remaining time from 40 to 60 which is represented by the area (60− 40)× 15 = $300.00 of the right rectangle.

It should now be clear how to define the cost function for general t:

C(t) =

{
10 t if 0 ≤ t ≤ 40,

400 + 15(t− 40) if t > 40.

Exercise 3: A product is sold for $7.00 each unless it is bought in bulk. If 100 items or more of the product are purchased,
the cost is $6.50 each. Develop a function r = R(q) for revenue r as a function of items sold q. Find the revenue from
the sale of 50 items, 100 items and 200 items. Graph the function.

Solution to #3:

This one is straightforward: We choose symbols that fit the entities they represent:

q  quantity of items sold in a particular sale
r  revenue of a particular sale

r = R(q)  revenue function dependent on quantity q

Revenue is $7.00q if q < 100 and $6.50q if q ≥ 100:

R(q) =

{
7q if 0 ≤ q < 100,

6.5q if t ≥ 100.
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A graph of this function is shown in Figure 4: “Problem B2: Revenue r = R(q)” below.

Figure 4: Problem 3: Revenue r = R(q)

Points of non-continuity

Exercise 4: For the following functions examine what happens at points where you would divide by zero and/or (the last
two functions) where the function definition changes: Is there a limit? If so, is it finite? If not, what about the one-sided
limits?

4a :
5

6x− 4
, 4b :

3x+ 2

x2 − x− 6
, 4c :

x2 − 2x− 35

x2 − 5x− 14
,

4d : f(x) =


1− 2x ifx ≤ 1,

1/(x− 2) if 1 < x < 3,

x+ 2 ifx ≥ 3;

4e : f(x) =


x2 + 4 ifx < 2,

(x+ 6)/(x− 1) if 2 < x ≤ 4,

x− 2/3 ifx > 4.

Solution to #4:

We note the following for the first four problems: Each one of them has at least one x-value for which we divide by zero
(for C4 this value would be x = 2). Of course this means that those x-values are excluded from the domains of those
functions but we cannot simply let go: those values can be approached from the left and from the right by x-values that
do belong to the domain and we must find out about the one-sided limits and then draw some conclusions about the
function behaviour at nearby those points.
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Solution to #4a We blow up for 6x− 4 = 0, i.e., for x = 2/3 because

lim
x→(2/3)−

5

6x− 4
= −∞, lim

x→(2/3)+

5

6x− 4
= ∞.

Left and right limit do not coincide, hence limx→2/3 5/(6x − 4) does not exist. We also note that we have a vertical
asymptote at x = 2/3.

Solution to #4b
3x+ 2

x2 − x− 6
=

3x+ 2

(x− 3)(x+ 2)

and we must examine more closely what happens for x = 3 and x = −2, the two points where we would divide by zero.
The numerator is not zero for either value and we know right away that the one-sided limits exist and will be either−∞
or∞. We plug in values close those points from the left and from the right, e.g., −2.01,−1.99, 2.99, 3.01, and we see
that in both cases we switch from negative on the left to positive on the right. It follows that

lim
x→(−2)−

3x+ 2

x2 − x− 6
= −∞, lim

x→(−2)+

3x+ 2

x2 − x− 6
= ∞,

lim
x→3−

3x+ 2

x2 − x− 6
= −∞, lim

x→3+

3x+ 2

x2 − x− 6
= ∞,

i.e., right-sided and left-sided limits are different at both x = −2 and x = 3 and the two-sided limit does not exist for
either point. Both x = −2, x = 3 have vertical asymptotes.

Solution to #4c
x2 − 2x− 35

x2 − 5x− 14
=

(x− 7)(x+ 5)

(x− 7)(x+ 2)
=

(x+ 5)

(x+ 2)
if x 6= −2, x 6= 7.

and we must examine more closely what happens for x = 7 and x = −2, the two points where we would divide by
zero. For x = −2 we have the same type of behavior as in a and b: the function blows up in different directions as we
approach −2 from the left and from the right; we have a vertical asymptote and the two-sided limit does not exist. For
x = 7 the situation is different: We can plug 7 into the simplified expression (x+ 5)/(x+ 2) and obtain

lim
x→7

x2 − 2x− 35

x2 − 5x− 14
= 12/9 = 4/3.

It follows that a) the two-sided limit exists (we just computed it!). We could “fix” the function by adding x = 7 to its
domain and decreeing its value there to be 12/5.

Solution to #4d

We note that each of three pieces is well behaved as far as doing something illegal like dividing by zero or taking a
negative square root or logarithm is concerned with only one exception: We would divide by zero for x = 2. Lets
worry about this later and first look at what is happening at the “splicing points” x = 1 and x = 3 where the function
definition on the left is different from that on the right. We obtain left-sided and right sided limits at those points simply
by plugging the x-value into the left side and the right side:

x = 1 : lim
x→1−

f(x) = f(1) = 1− 2 · 1 = −1, lim
x→1+

f(x) = 1/(1− 2) = −1,

i.e., lim
x→1−

f(x) = lim
x→1+

f(x) = f(1), hence f(x) is continuous at x = 1

x = 3 : lim
x→3−

f(x) = 1/(3− 2) = 1, lim
x→3+

f(x) = 3 + 2 = f(3) = 5,

i.e., lim
x→3−

f(x) 6= f(3), hence f(x) is not continuous at x = 3 (jump discontinuity!)
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Now to the unpleasant part: We note that the “division by zero point” 2 is part of the middle segment 1 < x < 3 and we
must take a closer look. First off, 2 does not belong to the domain Df and we know that x is not continuous at 2 because
continuity is restricted to the points x in the domain. Secondly, for x = 2 we have the indeterminate form “1/0”. This
means that f(x) blows up to ±∞ as x approaches 2 from either side and we have a vertical asymptote. More precisely,
if x comes from the left then x − 2 is negative, hence f(x) = 1/(x − 2) is negative, hence limx→2− f(x) = −∞.
On the other hand, if x comes from the right, then x − 2 is positive, hence f(x) = 1/(x − 2) is positive, hence
limx→2+ f(x) =∞.

Solution to #4e

We note that each of three pieces is well behaved as far as doing something illegal like dividing by zero or taking a
negative square root or logarithm is concerned with only one exception: The middle piece where f(x) = (x+6)/(x−1)
tells us that we would divide by zero for x = 1. But this defintion of f(x) is restricted to 2 < x ≤ 4, a segment to which
x = 1 does not belong: The denominator will never be zero!
Now to the “splicing points” x = 2 and x = 4 where the function definition on the left is different from that on the
right. We obtain left-sided and right sided limits at those points simply by plugging the x-value into the left side and
the right side:

x = 2 : lim
x→2−

f(x) = f(2) = 22 + 4 = 8, lim
x→2+

f(x) = (2 + 6)/(2− 1) = 8,

i.e., lim
x→2−

f(x) = lim
x→2+

f(x). It follows that lim
x→2

f(x) exists.

BUT f(x) is not continuous atx = 2 because f(2) has not been defined!
x = 4 : lim

x→4−
f(x) = (4 + 6)/(4− 1) = 10/3 = f(4), lim

x→4+
f(x) = 4− 2/3 = 10/3,

i.e., lim
x→4−

f(x) = f(4) = lim
x→4+

f(x), hence f(x) is continuous at x = 4.

Note that f(x) has a removable discontinuity at x = 2: If we add 2 to the domain Df of f and define f(2) = 8 then
this “extension” of f is continuous for all real numbers.
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