Math 220 - Calculus f. Business and Management - Worksheet 38

Solutions for Worksheet 38 - Investments and Money Flow

Exercise 1: Calculate these one-time investment problems (use calculators to get an approximate answer).
1a) What is the value of a single investment of \$1000 at an interest rate of 5% per year for a period of 5 years?
1b) How much needs to be invested today at 2% per year in order to have \$2000 after 10 years?

Solution to 1a and 1b:

Problem		
1a	PV = 1,000	FV = PV * e^(0.05*5)
	\$1,000.00	\$1,284.03
1b	FV = 2,000	PV = FV * e^(-0.02*10)
	\$2,000.00	\$1,637.46

Figure 1: Problem 1 computations

Exercise 2: *Find the future value for these investments.*

2a) How much will be in the bank if money is invested at a rate of 200 per year for 5 years at a rate of 5%?

2b) What is the future value of an investment of $1000e^{.01t}$ at a rate of 3% for 10 years?

Solution to 2a: Continuous money flow is \$200 per year;

Accumulated amount of money flow is

$$P(5) = e^{.05(5)} \int_0^5 200e^{-.05t} dt = 200 e^{.25} \int_0^5 e^{-.05t} dt$$
$$= 200 e^{.25} (1/-.05)e^{-.05t} \Big|_0^5 = -4000 e^{.25} (e^{-.25} - 1)$$
$$= 4000 (e^{.25} - 1)$$

Solution to 2b: The wording of the problem is not very clear about this but we interpret $$1,000e^{.01t}$ as the continuous money flow (investment <u>rate</u>) at time t: Future value

$$P(10) = e^{.03(10)} \int_0^{10} (1000e^{.01t}) e^{-.03t} dt = 1000 e^{.3} \int_0^{10} e^{-.02t} dt$$
$$= 1000 e^{.3} (1/-.02) e^{-.02t} \Big|_0^{10} = -50,000 e^{.3} (e^{-.2} - 1) = 50000 e^{.3} (1 - e^{-.2})$$

Exercise 3: *Find the present value of both the investments in question* 2.

Solution to 3: In both cases we obtain the present value from the future value by multiplying it with e^{-rT} .

Solution to 3a:
$$P(0) = e^{-.25}P(5) = $4,000(1 - e^{-.25})$$

Solution to 3b: $P(0) = e^{-.3}P(10) = $50,000(1 - e^{-.2})$

Exercise 4: *Choose the correct formula to answer each of these questions.*

a) A retiree decides to buy an annuity that will pay \$4000 *per year for* 20 *years. The interest rate on the annuity is* 6%. *How much will it cost to purchase this annuity?*

b) A young couple puts \$10,000 in the bank for their child's education. At 4% interest, how much will they have at the end of 15 years?

c) Grandparents want to put some money in the bank for their grandchild's first car. How much money must they put in now in order to have \$12,000 *in 8 years? Interest rates are* 3%.

d) A student begins saving at a rate of $240e^{.02t}$ per year. At an interest rate of 5%, how much will the student have after 5 years?

Solution to 4a: I have an issue with the wording of the problem: I am not a financial expert and do not understand the meaning of "The interest rate on the annuity is...". Considering the subject matter of the chapter on money flow I interpret this as "the risk-free interest rate on which the discount value of the annuity is based because I could invest at that rate rather than purchase the annuity": look at example 35.3 in the text (p.274) where you are asked to judge whether this is a good investment based on a <u>bank</u> interest rate of 7% at which you could alternatively invest your money. Under this assumption, here is the solution: Present value of the investment flow based on a bank interest rate is

$$PV = \int_0^{20} (4000e^{-.06t}) dt = 4000 (1/-.06)e^{-.06t} \Big|_0^{20}$$

= -66,666.67 (e^{-.12} - 1) = \$66,666.67 (1 - e^{1.2})
\approx \$66,666.67 \cdot 0.699 \approx \$46,587.05

Solution to 4*b: Straightforward computation of the future value of a one-time investment:*

$$P(15) = e^{.04(15)}10000 = \$10,000 e^{.6}$$

Solution to 4*c***:** Straightforward computation of the present value of a one-time investment:

$$PV = e^{-.03(8)} 12000 = \$12,000 e^{-.24}$$

Solution to 4d: Accumulated amount of money flow is

$$P(5) = e^{.05(5)} \int_0^5 (240 \, e^{.02t}) e^{-.05t} dt = 240 \, e^{.25} \int_0^5 e^{-.03t} dt$$
$$= 240 \, e^{.25} (1/-.03) \, e^{-.03t} \Big|_0^5 = -8,000 \, e^{.25} \left(e^{-.15} - 1\right) = 8,000 \, e^{.25} \left(1 - e^{-.15}\right)$$