Math 220 - Calculus f. Business and Management - Worksheets 5 & 6

Worksheet 5 & 6 - Exponents and Logs

Solving exponential equations

Exercise 1:

Find the value of x in each expression.

$$\begin{aligned} &1a: 5^{2x+3} = 5^4, \quad 1b: 3^{4x-7} = 3^{6-2x}, \quad 1c: 7^{x^2-8} = 7^{2x}, \\ &1d: 4^{x^3} = 4^x, \quad 1e: 2^x = 4^{x+5}, \quad 1f: 9^{-4x} - 3^{2x-3} = 0 \end{aligned}$$

Conversion between exponents and logs

Exercise 1:

Rewrite each exponential expression as a log and each log as an exponent.

Exercise 2: Without a calculator, find the value of *x* in each equation.

2a: $\log_5 x = 3$, 2b: $\log 1,000 = x$, 2c: $\log_x 64 = 3$, 2d: $\log_{16} x = 1/4$, 2e: $\log_x 9 = 1/2$.

Using inverse properties of logs and exponents

Exercise 3:

Simplify each expression.

Using properties of logs

Exercise 4:

Expand each expression into multiple logarithms having single character arguments (if possible).

$$\begin{aligned} &4a: \log_4(xy), \quad 4b: \log(3x^2), \quad 4c: \log_3(6x+2), \\ &4d: \ln\left(\frac{1}{3x}\right), \quad 4e: \ln\left(\frac{5x^4}{2\sqrt{2}}\right), \quad 4f: \log_4\left(\frac{x^3+8x^2+15x}{x+3}\right). \end{aligned}$$

Exercise 5:

Condense each expression into a single logarithm.

5*a*:
$$\log_5 x + 2\log_5 y$$
, 5*b*: $\log_2 4x - 3\log_2(2y)$, 5*c*: $(1/2)\ln(x^3) - \ln x$.

Exercise 6:

Find a numerical value for each expression.

 $\textit{6a:} \ (1/3) \log_2 64, \quad \textit{6b:} \ \log 25 + \log 4, \quad \textit{6c:} \ \log_6 9 + \log_6 12 - \log_6 3.$

Using logs to solve exponential equations

Exercise 7:

Solve each expression for x.

 $7a: 5^{2x} + 15 = 28$, $7b: 3(6^{3x+5} - 6) = 15$, $7c: 7^x = 6^{2x+3}$, $7d: 3^x = 4^x$ trick question.

Using exponents to solve logarithmic equations

Exercise 8:

Solve each expression for x.

$$\begin{aligned} & 8a: \log_2(3x+2) = 5, \quad 8b: 14 + 3\log_3 x = 20, \\ & 8c: \log_4(2x+5) - \log_4(x-1) = 2, \quad 8d: 2\ln(x-3) - \ln(21-2x) = 0. \end{aligned}$$

Using the change of base formula

Exercise 9:

Rewrite each expression as either a single natural log or exponent.

9a: $\log_5 x$, 9b: $3\log_7 x$, 9c: 4^x , 9d: 6^{3x+2} .

Challenge problem

Exercise 10:

Solve for x:
$$\frac{\ln 8}{\ln x} = \frac{\ln x^9}{\ln 8}$$