Math 220 - Calculus f. Business and Management - Worksheet 30

Worksheet 30 - Optimization Word Problems

Exercise 1: A movie theater has a seating capacity of 525. With the ticket price set at \$10, average attendance at a movie has been 375 persons. Management has decided to lower admission prices to boost attendance. A market survey indicates that for each two dollars the price of a ticket is lowered, average attendance will increase by 100.

a) Write a function, q = Q(p) to express the the quantity q of tickets sold as a function of the price p.

b) What is the range of possible values for the ticket price (consider that the theater can hold no more than 525 people)?

c) Use Q(p) to write the revenue function r = R(p).

d) To the nearest penny, what ticket price will result in maximum revenue? (Justify your answer)

Exercise 2: A manufacturer wants to minimize the cost of the container it is building to hold its products. The container is a rectangular prism (a box) with a square base. It must have a volume of $10 ft^3$ (cubic feet). The material that makes up the sides of the container costs \$0.12 per square foot. The material that makes up the top and bottom costs \$0.15 per square foot. What dimensions should the container have to minimize the cost of materials? How much will this optimal container cost?

Hint: Use the volume equation to replace the variable for the height of the box with the variable for the length of the sides of the box.

Exercise 3: A rectangular enclosure is to be built next to a river. There will be no fence on the river side of the enclosure. The cost for the material for the side parallel to the river is \$6.00 per foot. The material for the sides perpendicular to the river costs \$2.00 per foot. There is a budget of \$240.00 for the fence. What dimensions of the fence result in the largest enclosed area?