Math 220 - Calculus f. Business and Management - Worksheet 44-45

Worksheet 44 - 45 - LaGrange Multipliers

Exercise 1:

A rectangular enclosure is to be built. The East and West sides cost \$6 *per meter. The North and South sides cost* \$5 *per meter. What is the biggest area that can be achieved for* \$1,500?

Find the lowest cost option for this situation applying the method learned in earlier optimization problems (find critical points of a function of a single variable . . .)

Exercise 2:

Solve the problem in exercise 1 using LaGrange multipliers instead.

Exercise 3:

Solve these problems from your textbook using LaGrange Multipliers: Problems 4, 6 and 8

Exercise 3-A - Textbook problem 4:

A company has two plants that produce diamond necklaces. At plant A, it costs $x^2 + 1,200$ dollars to make x necklaces. At plant B, it costs $3y^2 + 800$ dollars to make y necklaces. An order has come to the company for 1,200 necklaces. (a) How many necklaces should be made in plant A and how many necklaces should be made in plant B if the company wishes to minimize the cost? (b) If the company charges the customer \$1,000 for each necklace, how much profit will they make from this order?

Exercise **3-B** - *Textbook problem* 6:

The total cost to produce x widgets and y bidgets is given by $C(x, y) = 3x^2 + 4y^2 + 2xy + 3$. If a total of ten items must be made, how should production be allocated so that total cost is minimized?

Exercise 3-C - Textbook problem 8:

Find the dimensions that will minimize the surface area (and hence the cost) of a rectangular tank, open on top, with a volume of 32 cubic feet.

Hint: There are 4 variables (including λ) in this problem. a) Solve F_x and F_y for λ and set the results equal to each other and solve for y. b) Use the solution for x in F_z to find λ . c) use F_y and F_λ to finish the problem